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Effect of looking at the car that follows in an optimal velocity model of traffic flow
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An extension of an optimal velocity model is proposed. In the new model, a driver looks at the following car
as well as the preceding car. We introduce an additional optimal velocity function that depends on the headway
of the following car. We investigate the effect of looking back at the car that follows and show that this
extension effectively stabilizes the traffic flow.
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I. INTRODUCTION

The investigation of traffic flow, especially of traffic con
gestion, is an interesting problem from a physical viewpo
Figure 1 shows some observed data of the freeway tra
the so-called fundamental diagram, which expresses the
lation between the flow and the density of cars@1#. The traf-
fic flow is divided into two states, a free flow state~the
left-hand side of the peak! and a congested flow state~the
right-hand side!. If the density is low, one can drive freel
and the flow is almost proportional to the density. While t
density becomes high, drivers are forced to reduce the ve
ity and congestion emerges.

There have been many attempts at constructing mo
for freeway traffic to explain the mechanism of congest
from the viewpoint of physics@2–4#. In recent years, cellula
automaton models@5,6#, coupled map models@7#, and fluid
dynamical models@8# have successfully described the d
namical formation of traffic congestion. The optimal veloc
~OV! model is a kind of car following model, which is ver
simple and has succeeded in showing the dynamical for
tion of congestion@9–14#. In the OV model, the change o
traffic flow can be understood as a kind of phase transition
the car density exceeds the critical value, the traffic fl
becomes unstable and the congestion appears dynami
The behavior of each car is described by a solitonlike so
tion of the equation of the OV model. Moreover, simulatio
based on this model reproduce well the real data in the
damental diagram. The diamond marks in Fig. 1 show
result of simulation. The global shape of figure is in go
agreement with the observed flow. The transition point fr
the free flow state to the congested flow state coincides w
the observed data. We note that there exists a metastable
in the vicinity of the critical density, which is an importan
property for characterizing the transition in real traffic. T
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metastable state is naturally induced in the result of the
namical effect of the OV model@13,14#. The results of simu-
lation by the coupled map model based on the OV mo
@15# in realistic situations, such as two lanes and junctio
are in good agreement with the real traffic data@16#.

The basic property of the formation mechanism of co
gestions is most simply understood by the OV model. T
OV model can be extended by taking into account the eff
of other cars as well as the preceding car. It is quite natura
take account of the motion of the car next to the preced
car or the following car, as we often pay attention to t
motion of such cars. In granular flow theories, each part
interacts with many other particles around it. In the unifi
viewpoint of granular and traffic theories, it may be mea
ingful to incorporate such an effect@17–21#.

FIG. 1. Fundamental diagram: Small dots represent the ob
vational data. Diamond marks are the results of simulations in
OV model.
©2001 The American Physical Society12-1
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As is well known, the traffic congestion is an importa
problem not only from a physical viewpoint but also from
social viewpoint. If the traffic flow is in the congested sta
much noise and much carbon dioxide are generated
much energy is wasted. In recent years, automatic driv
control systems are utilized as a part of the intelligent tra
port system~ITS!. The suppression of the appearance of tr
fic congestion is one of the target of the ITS. We can disc
how to stabilize the traffic flow in the context of the O
model @17,19#, because the formation mechanism of traf
congestion is naturally described by the OV model. In t
work we will attempt the most effective extension to the O
model. The new term, which incorporates the effect of loo
ing back at the car that follows, is added to the original O
model, and the effect of this term will be investigated co
cerning the stabilization of traffic flow.

II. OV MODEL

First, we briefly review the original OV model and ho
the model explains the emergence of traffic congesti
@9,12#. The model is formulated as

d2xn

dt2
5aFV~xn112xn!2

dxn

dt G , ~1!

for each car numbern (n51,2, . . . ).xn is the position of the
nth car andxn112xn is the headway of this car.a is a con-
stant called ‘‘sensitivity,’’ which we set at the same value f
all drivers.V(x) is called the optimal velocity function~OV
function!, which expresses the relation between headway
the optimal velocity of each car. A driver controls accele
tion or deceleration according to the difference between
optimal velocity and his own velocity.

The OV function has the following property: the functio
becomes zero for a small headway and approaches the m
mum value for sufficiently large headway. The typical e
ample of the OV function is

V~x!5a@ tanh~x2b!1g#, ~2!

wherea, b, andg are some positive constants.
The OV model has a homogeneous flow solution as

xn
(0)~ t !5bn1V~b!t, ~3!

where all cars are uniformly distributed,xn11
(0) 2xn

(0)5b, and
are moving with the same velocityV(b). The homogeneous
flow can be identified as the free flow in real traffic. We c
examine the stability of this solution by adding a small p
turbation @9#. We put xn(t)5xn

(0)(t)1yn(t) and linearize
with respect toyn(t). yn(t) can be expanded by Fourie
modes exp@ikn1iv(k)t#. The condition where the homoge
neous flow solution is stable for a perturbation is given
Im v(k).0 for all k. The result is

a.2V8~b!5
2a

cosh2~b2b!
, ~4!
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whereV8 is a derivative of the OV function~2!. The stability
of the homogeneous flow is decided by sensitivitya and
mean headwayb, which is the inverse of the car density. Ifa
is smaller than 2a, there exists a critical density for givena.
In the unstable case, the congestion is formed with time e
lution. A typical example of the congestion formation
shown in Fig. 2.

III. EXTENDED OV MODEL

Now, we investigate extended models to suppress the
mation of congestion. In the OV model, the appearance
congestion can be suppressed by choosing high sensiti
Here we show that it is not the best way and present ano
possibility, an extended model. In our extended model
driver looks at the following car as well as the preceding c
We call it the backward looking OV~BL-OV! model. Naga-
tani has investigated a different extended model from o
for the same purpose. His model incorporates the ne
nearest-neighbor interaction@19#, where a driver looks at the
preceding and the next to the preceding cars.

The BL-OV model is presented by the equation

d2xn

dt2
5aF $VF~xn112xn!1VB~xn2xn21!%2

dxn

dt G , ~5!

where VF(x) is the OV function for forward looking tha
plays the same role asV(x) in Eq. ~1!. VB(x) is the OV
function for backward looking, which is a function of th
headway of the following car@17#.

We choose two OV functions as

VF~x!5a8@ tanh~x2b!1g#, ~6!

FIG. 2. A typical pattern of congestion formation in the circu
The initial condition of the simulation is taken as the homogene
flow. The positions of the cars are plotted. Cars are moving fr
left to right, and congestion clusters are moving backward in
direction of the cars.
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VB~x!52a9@ tanh~x2b!1g#,

wherea8, a9, b, and g are positive constants. Thoughb
(g) may take different values forVF and VB , we set the
same value asb (g) in the original OV model for simplicity.
The velocity of the car is controlled according to the O
functions, depending on both the distance to the preced
car and to the following car. The functionVB(x) has the
effect of increasing the velocity of the car, if the headway
the following car becomes small. In this model, each ca
controlled so as to be positioned at the middle point betw
the preceding car and the following car.

In the same way as the OV model, we can find the hom
geneous flow solution: xn112xn5b and ẋn5VF(b)
1VB(b). The stability condition is

a.2
@VF8 ~b!1VB8 ~b!#2

VF8 ~b!2VB8 ~b!
, ~7!

which reduces to Eq.~4! when we switch offVB . To com-
pare the OV and BL-OV models, we assume that they h
the same homogeneous flow solution~3! for any mean head
way b. This condition is equivalent toV(b)5VF(b)
1VB(b), which results ina5a82a9. Using this relation
together with Eq.~6!, Eq. ~7! is rewritten as

a.
2a

cosh2~b2b!S a82a9

a81a9
D . ~8!

Obviously, the quantity on the right-hand side in Eq.~8! is
always smaller than that in Eq.~4! for the original OV
model. This means the free flow becomes stable, even if
take low sensitivity where the flow is unstable in the origin
OV model. The phase diagram of the original and exten
OV models clearly shows this result~Fig. 3!. The stable area
for the BL-OV model is larger than that for the OV mode

FIG. 3. The phase diagram of the OV and BL-OV models:
the upper region, the homogeneous flow is stable for both mod
In the middle region it is unstable only for the OV model, and in t
lower region it is unstable for both models.
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In a similar way, we can find the stability condition o
another extended model, which incorporates the ne
nearest-neighbor interaction:

d2xn

dt2
5aF $VF~xn112xn!1VFF~xn122xn11!%2

dxn

dt G ,
~9!

whereVF and VFF are OV functions for the preceding ca
and the next to the preceding car, respectively. The stab
condition is

a.2
@VF8 ~b!1VFF8 ~b!#2

VF8 ~b!13VFF8 ~b!
. ~10!

If we use the explicit formVF5aN8 @ tanh(x2b)1g#, VFF

5aN9 @ tanh(x2b)1g# and a5aN8 1aN9 ;1 then Eq. ~10! be-
comes

a.
2a

cosh2~b2b!S aN8 1aN9

aN8 13aN9
D . ~11!

The stability of the homogeneous flow state obviou
increases in this model also. In order to show the relat
among the stability conditions of these three models, we p
the ratio of critical sensitivities Eq.~8! to Eq. ~4! as well as
Eq. ~11! to Eq. ~4! ~Fig. 4!. These ratios can be written onl
by a9/a8 or aN9 /aN8 , which expresses the ratio of the ne

1This condition comes from the assumption that the model has
same homogeneous flow solution~3! for any mean headwayb. The
original form of OV function in Ref.@19# is (12g)V(xn112xn)
1gV(xn122xn11), and therefore the condition is automatical
satisfied.

ls. FIG. 4. The critical sensitivities of extended OV models co
pared to the OV model~solid line! are shown. The dashed line is th
ratio of critical sensitivities of the BL-OV to OV models, (a8
2a9)/(a81a9). The dotted line is the ratio of critical sensitivitie
of the Nagatani model to the OV model, (aN8 1aN9 )/(aN8 13aN9 ).
2-3
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term to the original term of the OV functions.2 The BL-OV
model stabilizes the homogeneous flow more than the o
nal OV model and another extended model incorporating
contribution of the next to the preceding car.

We also investigate the relaxation time of a small dist
bance. Imv(k) can be evaluated in the same way as
derivation of Eq.~4!. As mentioned in Sec. II, the stabilit
condition of the homogeneous flow solution is Imv(k).0
for all k. The relaxation time is determined by the lowe
value of Imv(k). We note that the unstability arises fir
from the longest wavelength modek;0. The lowest value of
Im v(k) is obtained fork52p/N, which is the minimum
value of k, whereN is the number of cars@9#. The lowest
value of Imv(k) for the OV model is

Im v;
k2

2a
V8~b!@a22V8~b!#5

k2

2a
~aa22a2!, ~12!

and that for the BL-OV model is

Im v;
k2

2a
@VF8 ~b!2VB8 ~b!#H a22

@VF8 ~b!1VB8 ~b!#2

VF8 ~b!2VB8 ~b!
J

5
k2

2a
@a~a81a9!22a2#. ~13!

Obviously the right-hand side of Eq.~13! is always larger
than that of Eq.~12!, as a5a82a9. Then the relaxation
time for the BL-OV model is shorter than that for the O
model in any sensitivity and any choice of parameters of
functions. The disturbance damps faster in the BL-OV mo
than in the OV model.

IV. SIMULATION

In order to demonstrate how the stability of free flow
improved in the BL-OV model, we perform the simulatio
The situation is as follows: 100 cars are running on the
cuit with the length 100. The mean headway isb51 and the
mean velocity is tanh(1). We take the parameters of
functions asa51.0, b51, g5tanh(1), a851.3, anda9
50.3. The last two conditions come from the fact that tw
models must have the same homogeneous flow solution
any density. In this parameter setting, the homogeneous
is stable under the conditions:a.2 for the OV model and
a.1.25 for the BL-OV model.

First we show how fast the disturbance disappears.
initial condition is that only one car has larger headway th
the others. The behavior in this situation is beyond lin
analysis. Figure 5 shows the behavior of disturbance un
the condition a52.5. The disturbance is absorbed mu
faster in the BL-OV model than in the OV model. The st
bility of traffic flow is improved for the BL-OV model also
when it exhibits nonlinear behavior.

From a social viewpoint, the consumption of fuel for dri

2In the BL-OV model,a9/a851 cannot be realized because
the conditiona5a82a9.
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ing cars is an important problem. Actually, traffic congesti
results in the consumption of much fuel. Such quantity c
be estimated by the changes of velocity, that is, the chan
of the kinetic energy of cars. We compare the BL-OV a
OV models with regard to ‘‘energy consumption.’’ Suppo
that a disturbance is added in the homogeneous flow, wh
propagates like a shockwave, then the velocity of each

FIG. 5. Superposed solid lines represent the damping beha
of the disturbance for the original OV model~a! and for the BL-OV
model~b!. The headway of only one car is twice as long as that
the others in the initial condition. The shock wave travels in the
direction.

FIG. 6. The solid line represents the energy consumption for
BL-OV model and the dashed line represents that for the
model. The energy consumption diverges at the critical sensiti
a52.0 for the OV model anda51.25 for the BL-OV model.
2-4
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oscillates several times until the disturbance disappears~Fig.
5!. The changes of velocity result in the additional consum
tion of energy compared to the case of no disturbance.
use the following quantity for estimating such additional e
ergy consumption:

E5(
cars

(
waves

1

2
~vmax

2 2vmin
2 !, ~14!

whereSwave denotes the summation for all periods of osc
lation until the disturbance disappears. Figure 6 shows
energy consumption for the BL-OV and OV models. T
BL-OV model obviously causes less consumption of ene
than the OV model in any value of sensitivity.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the effect of backw
looking in the OV model. In our extended model, the stab
ity of traffic flow has increased. This extension enables u
suppress the formation of congestion effectively and to
duce the energy consumption. The OV model and two
tended models have been compared under the condition
they have the same homogeneous flow solution for any d
sity. Among these models, the BL-OV model provides t
most stable flow in any of the cases discussed in this pa

The suppression of the emergence of congestion is on
the most important problems of the social domain. T
BL-OV model has the ability to tune parameters for such
purpose. The parameters can be selected so as to stabiliz
homogeneous flow state best at a given mean headway
example, if we intend to stabilize the flow atb5b51 and
g5tanh(1), we choose the OV function as

VF~x!50.7@ tanh~x21!1tanh~1!#,

VB~x!50.3 @2tanh~x21!1tanh~1!#. ~15!

We note that the homogeneous flow solution under this c
dition is the same as that in the OV model~3! at the value
b51 only. In this parameter setting the flow becomes m
stable. We demonstrate the improvement in the stability
flow by simulations~Fig. 7!. The damping speed of distu
bance is much faster than those in the previous section~Fig.
5!. Figure 8 shows the energy consumption in this mod

FIG. 7. Superposed solid lines represent the damping beha
of the disturbance for the BL-OV model with tuned parameters
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The choice of these parameters gives not only low ene
consumption but also a small critical sensitivity. The abo
procedure of choosing parameters has a large advantag
stabilizing the free flow, when the BL-OV model is applie
to the real traffic flow.

Through the investigation in this paper, we can sugg
that any basic theory for the control of traffic flow shou
incorporate the effect of backward looking. This effect im
proves the stability of traffic flow concerned with the follow
ing two points. First, traffic flow is always disturbed by in
tersections or other road conditions in real traffic. So, h
fast the flow absorbs such disturbances is important. If
take into account backward looking in the OV model, t
disturbance in free flow damps much faster than the orig
model. Second, it is a general property that the formation
congestion is suppressed by developing high sensitivity.
the engineering side, high sensitivity requires that the con
system respond sensitively to the change of headway
velocity. But it is technically difficult. As we have mentione
in Sec. III, the stability region is extended in the phase d
gram for the BL-OV model~Fig. 3!, which incorporates the
effect of backward looking. This means that the effect sta
lizes the traffic flow even at low sensitivity. The idea
backward looking is beyond the usual control of drivers, b
can be realized by some engineering techniques of the
Such a realization seems easier than the development
sensitive control system.
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FIG. 8. The solid line represents the energy consumption for
BL-OV model with tuned parameters. The energy consumption
the BL-OV model diverges at the critical sensitivitya50.32.
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